Skip navigation

A couple of years into my work on OpenGL I was given responsibility for running the OpenGL team as the dev lead. The team – like many of Microsoft’s development efforts back then – was small enough so that I could continue to have a hands-on role in coding while being the team’s manager. Although I knew that I would have less time to code, I was comforted knowing that I wouldn’t have to leave it behind completely. I was excited to have the opportunity to lead the OpenGL development effort but also apprehensive about managing people, especially people who had been my peers.

By this time, I had turned my focus to enabling graphics hardware to accelerate OpenGL performance. Although OpenGL on Windows already had an available hardware acceleration model – the Installable Client Driver, or ICD – it required the hardware vendor to license the OpenGL technology from SGI. In addition to that obstacle, developing an ICD was also complex; it required implementing the entire OpenGL API stack rather than just the parts that the hardware could accelerate. The specific method for accelerating the parts that made sense for some specific piece of hardware was entirely up to the vendor to design and implement from scratch. There was no common template or protocol or framework to follow. This approach provided maximum flexibility but at a very high implementation and maintenance cost. An ICD vendor wasn’t simply maintaining a device driver; they were maintaining an entirely separate implementation of all of OpenGL. OpenGL ICDs and the Windows OS kernel had a mechanism to exchange chunks of generic data which allowed the hardware portion of the ICD to communicate with the rest of the ICD implementation. Again, this was very flexible but also meant that every vendor had to come up with their own custom approach to structuring the communications between client mode (where regular programs ran) and kernel mode (the trusted execution environment where the OS and hardware-level drivers executed).

At the time, ICDs were fine for their intended target of high-end workstations. But my passion was to continue to push 3D graphics into the mainstream. A number of hardware vendors had become interested in providing dedicated 3D-acceleration hardware at lower cost, and given Moore’s Law and the volume-based economics of the PC business, hardware-accelerated 3D graphics was well positioned for mass adoption. To help move things forward, I wanted to make it much easier for hardware vendors who were new to 3D to bring their products to market. The difficulty and investment required to write an ICD driver was a significant obstacle to an emerging ecosystem of commodity 3D hardware.

Having done a bunch of driver work in the past, I set out to architect an OpenGL driver model that would provide a standardized interface to lower-cost hardware and remove as much of the software complexity of ICDs as possible. I focused on exposing only the functionality that lower-cost hardware could reasonably support, namely, the rasterizing of 3D primitives near the bottom of a complex 3D graphics pipeline. For example, 3D transformations and lighting operations would be done on behalf of the driver; the driver just had to render the computed 3D primitives on the screen. This division of labor could provide massive increases in overall graphics performance.

I called the driver model the Mini Client Driver, or “MCD” since it was similar in flow to an ICD, but the vendor only had to implement the rendering-specific part of the OpenGL stack.

S3 VirgeI wrote a corresponding sample driver (if I remember correctly, it used S3’s Virge hardware), and with the help of the OpenGL team, got the sample code and the corresponding MCD documentation into the next releases of Windows NT DDK (Driver Development Kit).

It’s worth making a few comments on driver development in general. Writing driver code can be one of the most satisfying and frustrating experiences possible as a developer. It’s incredibly exciting to have a new driver you’re building to actually do something useful with a piece of hardware for the first time (for example, rendering a test triangle on the screen). But drivers run as part of the operating system, so bugs and driver crashes can take down the whole OS. And with graphics drivers in particular, you always risk screwing up the thing you rely on the most to program and interact with the machine – the display. Add to this the fact that hardware doesn’t always work as documented, and that it’s very easy to miss setting the needed bit on some register or to have an off-by-one or some other error send the hardware into oblivion.

With enough persistence, lots of reboots, and the occasional debug print when all else fails, a robust driver will eventually emerge. And with any luck, you will never hear about your device driver because the only time that you do is when it’s NOT working. As with so many jobs in technology, writing drivers can be a thankless and invisible job despite being critical to making the technology we take for granted actually work.

Back to the main story: having released MCD for Windows NT, any graphics card vendor could now quickly and relatively easily implement OpenGL hardware acceleration using a standard driver model. Since the driver model itself was largely OS-agnostic, I then shifted our focus to providing a Windows 95 version of ICD to satisfy both growing developer and hardware vendor interest in OpenGL and 3D graphics. Windows NT had a growing but still relatively small share of the market compared to Windows 95, and I wanted to see OpenGL fully enabled on both operating systems. We engaged the hardware community around making OpenGL MCD drivers available on Windows 95, got the Windows 95 version of the code up and running quickly, and everyone was expecting the DDK update to be released very soon.

And then, I was asked to do something that would change everything.

%d bloggers like this: